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Abstract. In earlier papers we i n d u c e d  a quantum state diffusion model for he evolution of 
an individual open quantum system, and proved localization theorems based on this model. Thii 
paper shows in more detail how the diffusion leads to localization in position and phase space, 
and to symmetry breaking for chiral molecules. The theory of radioactive decay of absorbers 
and detectors is described in he. state diffusion picture., The Mott and Gumey heory of latent 
image formation in photography is presented in its stag diffusion version. It is an example of 
quantum detection without significant amplification. 

1. Introduction 

In [ l ]  we introduced a state diffusion model for the state of an open quantum system, 
and showed how this model could be applied to investigate simple physical processes. 
We emphasized the practicality of the model for computation. In the preceding paper 
in this issue, we proved theorems on localization [2]. In this paper we show how the 
model can be applied to a wide variety of physical processes in which localization plays an 
important role. The emphasis is on the physical insight which is achieved in representing 
the stochastic behaviour of an individual open quantum system explicitly. This contrasts 
with the usual representation of the averaged properties of an ensemble by density operators, 
but is consistent with it. 

The notation, conventions, definitions and theorems of the previous paper [2] in this 
issue will be followed throughout, and that paper should be used to refer to details that are 
not given here; 

Instead of looking at the deterministic evolution of the density operator p representing 
an ensemble of systems A,  

... 
we look at the stochastic diffusion of a quantum state I$) representing an individual system 
of the ensemble in interaction with its environment B .  The corresponding quantum state 
diffusion equation is a stochastic differential equation for the normalized state vector I$), 
whose differential It6 form is, from [2], 

(1.2) 
m 
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This difference is particularly clear in the theories of localization and measurement. In this 
picture localization (or reduction) in A is a stochastic process caused by interaction of the 
system with its environment, which may or may not be a measuring apparatus. A partition 
of the state space of A divides it into orthogonal subspaces or channels with projectors 
Pk. Where ensemble probabilities in these channels are preserved during the interaction, 
the individual systems tend to become localized in the channels in the sense that the mean 
square deviation or dispersion entropy is reduced, with an end result that is extremely close 
to a complete localization, with each system of the ensemble confined to one channel, an 
ideal limit of the real incomplete localization. For continuous dynamical variables, like the 
very important case of position, the localization is never complete in this sense. 

In section 2 we introduce a helpful analogy between elementary circuit theory and 
localization theory, with particular reference to localization in position space. In section 3 
we find that state diffusion due to the environment breaks the chiral symmetry of molecules, 
as an elementary consequence of position localization, and the interaction of any symmetric 
system with any fluctuating environment breaks the symmetry of the the system. 

Section 4 describes the quartic oscillator or double-well model, and sample solutions 
of this model are used to illustrate some of the general principles that apply to more 
complicated systems like molecules, and also the phase-space localization of macroscopic 
systems, which is discussed in section 5. 

In section 6, the state diffusion theory is applied to an absorbing screen and to a 
detector, leading to section 7, in which the state diffusion model of latent image formation 
in a photographic plate is described. The last example is the radioactive decay described in 
section 8, and we finish with a discussion of the role of state diffusion in the final section 
9. 

N Cisin and IC Percival 

2. Electric circuits and position localization 

There is a close analogy between the state diffusion theory of quantum mechanics and 
classical circuit theory. An electric circuit includes both Hamiltonian elements, with 
capacitance and inductance, and non-Hamiltonian elements, such as resistors, which 
represent the interaction of the system with its environment. This interaction produces 
stochastic fluctuations in the form of thermal~noise, which could be represented by an Ita 
equation. The resistors are treated on the same basis as the Hamiltonian parts of the system, 
and it is not considered necessary to analyse the detailed physics of every resistor before 
attempting to solve a problem in circuit theory. Nevertheless, it is important that such an 
analysis should be possible, as, for example, when treating an aerial as a resistor. 

Similarly the environment operators of the state diffusion theory represent particular 
types of interaction of the system with its environment. There is no need to carry out a 
detailed physical analysis of these interactions before attempting to solve a problem in the 
theory of open quantum systems, as shown in [I]. In particular each channel, consisting of 
any number of states, can be represented by a onestate channel. The transitions between 
channels are then represented by relatively simple operators. For example annihilation and 
downward transition operators can represent dissipation by the environment, and localization 
in eigenspaces of a dynamical variable x can' be represented by an environment operator 
X. If the operators are chosen well, then localization of quite complicated systems can be 
represented adequately if approximately by these simple models. 

From 121, position localization is particularly common and important because 
interactions are localized in position. There is very approximate localization on the 
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eigenstates of the position operator, but perfect localization is impossible in this case, both 
because interactions are not perfectly localized in position, and because it would require 
infinite energy to produce this pure state. 

Usually the interactions arc complicated but, in the spirit of circuit theory, the effect 
of the localization on the system can be approximated by relatively simple environment 
operators, of which the simplest is the position operator itself, with a constant factor. This 
is used in section 5 on phase-space localization. It might then be helpful to think of the 
environment as performing a measurement of position. But this is just a way of thinking 
about the localization, because most environments do nothing of the kind! 

A better approximation, which is still fairly simple, is to represent the local interactions 
by a set of operators PK which project onto the regions of a partition of position space, 
and a further improvement is to multiply each projection operator by other operators which 
represent the details of the interaction in that region, such as annihilation operators of a 
local linear oscillator, which represent dissipation. These are local operators in the sense of 
[2]. This is applied to the double well in section 4. 

For compound systems with many particles, the interaction is not localized in the 
configuration space of the system, but the interaction of each distinguishable particle with 
the environment is localized in position space. So the overall effect is to localize each 
particle in position space, which is equivalent to localizing the whole system in configuration 
space. 

Now consider identical particles. In the state diffusion equation (1.2) of [2], the 
environment operators L,  operating in the space of A-states are matrix elements for a 
basis in the space of E-states of the Hamiltonian Has for the system and environment 
together. If the basis has the correct symmetry, then these matrix elements are invariant 
under permutation of the particles, whether they are bosons or fermions. So the right-hand 
side has the same fermion or boson symmetry properties as the state vector, and the diffusion 
equations preserve the permutation symmetry of the state vector. Therefore indistinguishable 
particles cannot be localized individually, but the effect of the interaction is to localize in 
a particular configuration, together with those other configurations obtained by permutation 
of the particles. Bell [31 has remarked that the original quantum jump position localization 
theory of Ghirardi et a1 [41 destroyed the symmetry of fermion and boson state vectors, and 
this fault was remedied by the corresponding state diffusion theory, as remarked by Gisin 
[51, Ghirardi et a[ [6] and by Di6si [7]. 

3. Symmetry breaking and chirality 

When the Schrodinger equation for a pure'state or the Bloch equation (1.1) for a density 
operator are invariant under a symmetry operation, then there is no explicit mechanism 
for the destruction of the symmetry. But the state diffusion equations (1.2) are stochastic, 
so if individual states of the environment are not symmetric, individual systems diffuse 
away from an initial symmetric state, and the symmetry of the state is broken. In state 
diffusion theory this is no more surprising than the broken spherical symmetry of the path 
of a Brownian particle diffusing away from some fixed origin in space. 

In the case of ammonia, the molecule has symmetry with respect to inversion in a 
plane parallel to the plane of the hydrogen atoms, but unlike the permutation symmetry of 
particles, the environment does not respect this symmetry, so in this case the localization 
produced by the diffusion can and does destroy the symmetry for individual systems, even 
though the symmetry of the ensemble is preserved. This is general. 
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In the very common case of molecules in a sufficiently dense environment of atoms or 
other molecules, the configuration localization of the previous section results in a molecule 
which is localized in the neighbourhood of a definite configuration. For the ammonia 
molecule, this destroys the reflection symmetry, and for chiral molecules it selects one of a 
pair of isomers which transform into each other under reflection in a plane. So the breaking 
of chiral symmetry is a direct and elementary consequence of position localization, which 
is a consequence of the locality of interactions in position space. 

The principles of this symmetry breaking are illustrated by the double-well model of 
section 4. 

The suggestion that the environment can break chiral symmetry has a long history [& 
111. When the evolution of a chiral system is described by a density operator, then, like 
the other forms of 1ocalization.treated in this way, there is no explicit representation of the 
process that leads to the chirality of individual systems. It is inferred from the reduction 
in the off-diagonal matrix elements of the density matrix. Nevertheless, this work is very 
valuable for the quantum state diffusion theory, since it gives a detailed account of the 
physical processes that lead to the symmetry breaking. According to state diffusion theory, 
the breaking of the symmetry of chiral molecules is just one more example of the power of 
position localization, which leads to configuration localization, which in turn is incompatible 
with the symmetric states. 

For the inverse process, the remarkable result quoted by Hanis and Stodolsky [12] that 
at low temperatures ‘the more rapid the rate of collisions the less rapidly the chirality can 
relax’ is because the diffusion localization dominates the barrier penetration. The asymmetry 
of the environment leads directly through its interaction with the system to maintain the 
asymmetry of the states of the individual systems of the ensemble. 

4. The double-well model 

This is a convenient model to illustrate some of the principles of localization. 
The Hamiltonian is 

giving the double-well potential illustrated in figure 1 for e = 8. The energy eigenstates 
are even len) and odd Ion), each sequence labelled in order of increasing energy. In the 
neighbourhood of the minima at it the potential looks like a well with angular frequency 
o = 1. With appropriate phase conventions, the left (-) and right (+) states of the double 
well are linear combinations of the even and odd states, given by 

1 
I - n )  = -([en) + Ion)) J2 

1 I + n )  = -(len) - Ion)). 45 

(4.2) 

For low values of n,  the pairs of even and odd states are nearly degenerate, and the left and 
right states are excellent approximations to the eigenstates of the left and right oscillators of 
the double-well. For these states the coupling between the left and right oscillators can he 
neglected in most environments, and the Hamiltonian is almost the same as that of a single 
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oscillator with unit angular frequency together with a degenerate spin-; system. Before 
treating all the details of the doublewell potential, it is useful to start with this simple 
model, whose Hamiltonian is 

Ha = ;(p= + 4 2 )  

= t ( P :  + 9:) + i(P2 + 9 3  

where, by definition, 

P+ = P*P 9* = P*q 

(4.3) 

(4.4) 

and P+. and P- are projection operators onto ---: +z and -1 states of the spin. The 
second form for Ha illustrates explicitly a general expression for separability which can be 
generalized to a wide class of localization and measurement problems. 

Figure 1. The quartic double-well potential (4.1) with e =~8. Horizonfa1 lines represent the 
low. medium and high initial mean energy of section 5. 

Interaction with the environment can take place at either well. We suppose that these 
interactions are sufficiently localized that they operate on the left well or the right well, but 
not on both. In that case they can be represented by environment operators which can also 
be split into two types, and which act in the subspaces defined by P+ and P-, so that they 
are of the form Lm+ or Lm-, where 

Figure 2 presents a sample solution of the diffusion equation for the  case of two 

L+ = P+a (4.6) 

where a is a standard annihilation operator. The initial state is a linear combination of 
coherent states with equal amplitude for each oscillator. It is an approximation to a linear 

environment operators 
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0 1 2  3 4 5 6 7 8 9 10 
Time 

Figure 2. Single run of the spin-: simplified double-well model. with Hamiltonian (4.3) and 
two dissipative environment operaton (4.6). The graphs are of mean spin (az) and mean photon 
number (da) in each well as a function of time. The first shows the localization in the right 
well. denoted f. and the second shows the effect of the dissipation. with reduced fluctuations 
at later times. 

combination of coherent states with the same amplitude in each well for the original quartic 
oscillator. After a transient time with large fluctuations, the system stabilizes into one well 
or the other. Another sample would localize after following a different random path. The 
relative frequency of localization i n  one well or the other is equal to the weight of the initial 
state in that well. This is a consequence of the consistency of the diffusion equations with 
the usual density operator theory. 

We now come back to the real quartic double well in the presence of decay and of 
separate interaction of the two halves of the well with the environment. In order to simulate 
this interaction we extended the computer program of [I] to include the operator 

(4.7) 
@I 

Here In) is the nth excited state of a harmonic oscillator centred at the origin, where there 
is a local potential maximum of the double well. The projectors onto the left (P-) and right 
(P+) halves of position space are then well approximated by the following projectors: 

P* = 1(1& 2 R) .  (4.8) 

The annihilation operator on the left well of the double oscillator, representing a dissipative 
interaction with that well only, is given by 

(4.9) 
Similarly 

a+ = P+(a - e / A ) p + .  (4.10) 
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Figure 3. Symmehy breaking for the quartic double well (4.1) with two dissipative environment 
operators given by (4.11). The plots for a single ~n show the mearposition (4)  and the RMS 
deviation in position Aq. The localization in one well and the redunion in the variation are 
clearly shown. 

Figure 3 illustrates symmetry breaking for the double-well potential (4.1) with e = 8 
and two dissipation environment operatom 

representing independent dissipative interactions with the environment for each side of the 
double well. 

The initial state li) was chosen to be a Gaussian with minimal standard deviation at the 
top of the barrier between the two wells. 

In all runs the state first delocalizes and fluctuates strongly. For the example shown in 
the figure, the expectation of the centre of mass (4) first moves to the left, but eventually 
localizes in the right-hand well where it smoothly oscillates and relaxes toward the bottom 
of the well. Thanks to the quantum state localization, an initially symmetric state localizes 
on one side of the barrier, and the symmetry is broken. Note that it is the fluctuations 
that break the symmetry; on averaging over a large number of runs, the mean evolution is 
symmetric, with the localization taking place as frequently on one side as the other. 

Using this as a model for the ammonia molecule, if it could be prepared in an excited 
symmetric vibrational state, its symmetry would soon be destroyed by its interaction with 
the environment. Furthennore, for energies at the top of the barrier or below, the molecule 
moves rapidly into one or other of the two configurations. This is much stronger than saying 
that one can no longer secinterference between~them. 

In fact one can say more: it is very difficult to produce such molecules, because the 
interaction with the environment would have to be removed both at the time of preparation 
and during storage. 
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5. Phase-space localization 

N Gisin and IC Percival 

The centre of mass of a star or a football or a raindrop is localized in phase space. The 
quantum variances of position and momentum are both much smaller than small fluctuations 
due to extemal perturbations, so, classical dynamics can be used. 

We have seen in section 2 that the localization in position or configuration space is a 
consequence of the fact that interaction potentials are localized in position space, but this 
does not explain the localization in momentum: indeed from the usual quantum viewpoint 
we would expect the position localization to produce a spread in momentum. 

The localization in momentum is more subtle; the process takes place even for simple 
dissipative quantum systems, which illustrate the principles that apply at the macroscopic 
level. The simplest example is the forced damped oscillator treated in [2]. In that case an 
arbitrary initial state fluctuates, with a wide variance in both and position and momentum, 
but tends eventually towards a coherent state in which both the position and momentum 
spread are reduced to small values with the minimum Heisenberg indeterminacy product of 
R/2, as illustrated numerically in [I ,  figure I]. Normally the localization is not nearly as 
efficient as this. 

The process depends on the coupling of position and momentum by the dynamics. In 
this system, as in macroscopic systems, there is a continual interchange between kinetic 
and potential energies. As a result a wavepacket which is localized in the position or, more 
generally, the configuration variables, becomes a wavepacket that is localized in momentum. 
In state diffusion theory this transfer of localization is a consequence of the action of the 
usual Schriidinger terms, and not of the environment terms. 

Time 

Figure 4. Single run of the quartic double well and position localization environment operator 
9/20, with initial symmenic state of low initial mean energy (see figure I). The full line is the 
mean position ( q )  and the upper dotted line is the Heisenberg indeterminacy product AqAp, 
both as a function of time. The horizontal dotted line is the minimum value of the product. 
which is t .  After swinging towards the negative well, the system settles in the positive well, 
where it oscillates almost linearly and settles down to a state ofclose to minimum indeterminacy. 
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Time 

Figure 5. As figure 4. but with medium initiaI mean energy close to the top of the barrier. Each 
wllision with the barrier produces both significant forward and significant backward scattering. 
The resultant Hamiltonian dispersion prevents phase-space localization for long times, as shown 
by the wild flucNations of the indeterminacy producr 

-15 

Time 

Figure 6. As figure 4, but with high initial mean energy. ?he oscillalions in the quartic 
potential an highly nonlinear, yet there is phase space localization, as shown by the reduction 
in the indetermimy product However the phase space localization is not nearly so effective 
as for the linear oscillator. 

So the localization in momentum takes place in two stages: first a localization in 
position due to interaction with the environment; and then the transformation of the position 
localization into momentum localization through the Schrodinger dynamics. Normally 
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the localization does not proceed as far as a minimum indeterminacy wavepacket, but 
such complete localization is quite unnecessary for the validity of classical mechanics in 
macroscopic systems. A more typical example of localization in a simple quantum system is 
given by the quartic oscillator of the previous section, with position localization represented 
by the environment operator 9/20.  The time dependence of the indeterminacy product 
A q A p  is illustrated in figures 46 for various initial conditions, illustrated in figure 1. 

When the mean energy is significantly less than the maximum barrier potential energy 
between the wells, the wavepacket settles down into one well or the other, and localizes 
approximately like a damped linear oscillator. When the mean energy is much greater than 
the barrier energy, the energy exchange mechanism produces a localization in momentum, 
in a fluctuating wavepacket whose indeterminacy product is significantly greater than the 
minimum. When the energy is near to the barrier energy, the wavepacket is split by collision 
with the top of the barrier into forward and backward scattered parts, resulting in a rapid 
Schrodinger dispersion, which is too strong for the localization process to overcome, so 
instead of localization there is a wild fluctuation. 

For such simple systems the extent of the localization depends on the details of the 
dynamics, but for macroscopic systems. there are many localization processes, each due to 
a different environment operator, and partial barrier penetration is negligible, so in practice 
the environment localization always overcomes the Schrodinger dispersion. 

N Gisin and I C Percival 

6. Absorbing screens and detectors 

In electric circuit theory. a distributed system like a transmission line or an aerial may be 
represented by a circuit with lumped constants to varying degrees of approximation. For 
example, an aerial may be represented by a single (dissipative) resistor, or a network of 
resistors, or by an infinite (Hamiltonian) array of inductances and capacitors, where each 
representation is an improvement on the previous one. 

There are similar sequences of approximations in the state diffusion theory of localization 
whose validity depends on the localization theorems of [2].  A channel may have any number 
of states. In the simplest model it is represented by a single quantum state with projection 
operator PK and localization with respect to this channel is represented by ,9’I2Pk where p 
is a localization rate. A better representation may assign a finite number of states to the 
channel, and an environment operator PkLkj to represent each type of interaction of the 
system with its environment. By the dispersion entropy theorem applied to this channel and 
its complement, this set of operators will also localize the system into or out of the channel 
k. The representation may be made even more realistic by representing more of the system 
by explicit Hamiltonian terms. If these terms are to represent irreversible processes, then 
the state space must be infinite. 

A particle of mass m propagating in free space meets a screen which can absorb it. 
Suppose the Hamiltonian operator of the state diffusion equation is given by 

where the potential is non-zero only within the screen region, denoted by S. Because position 
plays an important role it is convenient to use a notation in which the wavefunctions Y(r.  t )  
which are solutions of the Schrodinger equation, and the wavefunctions $(T, t ) .  which are 
solutions of the state diffusion equation, are represented explicitly as functions of r. 
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Suppose that the projector PI of the first channel projects onto the free space outside 
the screen and that PI of the second channel projects onto the region of the screen. The 
ensemble probabilities p~ (t) and p d t )  can be obtained from the solution of the Schrodinger 
equarion, and in the common case when there is no reflection from the screen, they can be 
obtained from the solution of the equation in free space alone. Then 

a(t)~= dpz(Ol& (6.2) 

is the absorption rate.of the screen. 
In the simplest state diffusion model, the space dependence is ignored; the channels I 

for free space and 2 for the screen are each represented by one state, and the transition from 
one to the other is represented by the timedependent transition environment operator 

The interaction with the screen as an environment is represented by the projection 
environment operator PZ with a coefficient whose square is proportional to the effective 
absorption rate coefficient j3, so it is 

Since the interactions with the screen are typically faster than a and there are very 
many of them, ,9 is typically very much greater than a, so the transitions of the individual 
systems are rapid, even more rapid than the transitions illustrated in figure. 6 of [l]. 

A better approximation represents the position dependence explicitly, by the 
wavefunction ~ ( r ,  t )  which satisfies Schriidinger’s equation inside and outside the screen, 
with normalization constants that are determined by the localization. Absorption or other 
effective interaction is represented by 

Before the wave $(r.t) representing the incident particle strikes the screen, it is 
localized in free space. In the simplest two-state model, the subsequent behaviour resembles 
the radiative decay from the upper state of a two-state atom, as discussed in [I]. If j3 is 
large enough, then a sample system A remains in the free space channel until it makes a 
sudden irreversible transition to the screen channel. The only difference from the radiative 
decay model is that the transition rate is time-dependent. In the second model the same 
sudden transition takes place, but the space dependence outside the screen is represented 
explicitly. Although the representation by a single state of channels with many states is 
often adequate, it is oversimplified for some, like the quantum Zeno effect. 

The second model is good enough to represent the localization between the screen and 
free space, but it is too simple to represent the details of what happens inside the screen. 
A third and better representation of the behaviour inside the screen is obtained by dividing 
the region S of the screen into miny parts 3,. where each part contains absorbers. The 
corresponding absorptions are represented by projectors Pk with different coefficients ya ta 
represent different absorption efficiencies. If the absorption is rapid by comparison with the 
Hamiltonian rates, the dispersion entropy theorem of 121 shows that a system will eventually 
localize in one of the regions Pk. 

A very simple model of the process of detection is given by a modification of the first 
model of the absorbing screen. There are three channels. The first two are the same as 
for the absorbing screen, but there is a thii channel, which is coupledto the second. The 

Pz. 
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amplitude in this channel corresponds to the detection of the particle. The third channel is 
coupled to the second by an irreversible transition environment operator of the form (6.3), 
and it is localized by a projection operator of the form (6.4). In this model it is assumed that 
every particle is detected. To represent the inefficiency of real detectors a fourth channel 
is required, to represent the undetected particles, with a transition operator from channel 2. 
An example of a simple model of detection is given in the next section on the photographic 
latent image. 

For a particle to be detected, it is necessary for it to change the state of the detector. 
This may be achieved by absorption, but that is not necessary, and the localization which 
takes place due to any change in the state of any system like a detector can be modelled as 
shown above for an absorbing screen. 

N Gisin and I C  PeGival 

7. Photographic latent image 

A photographic latent image is an example of a single-photon detector which clearly 
distinguishes the formation of a robust microscopic record of a quantum event, and the 
subsequent amplification of that record to the macroscopic level [13]. The first is the 
formation of the latent image, which is described in this section, and the second occm 
during production of the negative, which may take place weeks or months later. 

We present the state diffusion picture of the standard theory of Gurney and Mott [ 14,151 
for the formation of the latent image. According to this theory each effective photon leaves 
a record as a result of a two-stage process. 

In the first stage the photon enters a crystal of silver bromide embedded in gelatine and 
ejects an electron from the negative bromine ion of a polar silver bromide molecule: 

Br- + fiv + Br+ e (7.1) 

The photon is not detected if the electron retums to the original silver bromide, but 
immediately after ejection it has  too much energy to do so [15]. 

Instead, in the second stage, i t  diffuses inside the local silver bromide crystal to its 
surface, where it is trapped by the Ag+ of the polar silver sulphide molecules that are 
located there. These trapped electrons attract further Ag" ions, which form the latent 
image, as shown in figure 7. 

This is how the process are usually described in the general literature, as if they were 
classical, but in fact the processes are quantal, as they must be for the detection of individual 
photons. The quantum description differs from the classical description in that the photons, 
atoms and electrons are represented by state vectors or wavefunctions. This holds both for 
the orthodox quantum picture and for the state diffusion theory. However, in the orthodox 
picture it is meaningless to ask when the events described actually take place, whereas in 
the state diffusion picture it does make sense, for it allows us U, visualize what is happening 
to the state vector, which continuously diffuses and localizes because of the interaction with 
the environment. 

A simplified model of these processes consists of dividing the state space of the photon 
and molecules into channels, each represented by a single state, as in the detector theory of 
the previous section: 

channel 1-the incident photon state together with a silver bromide molecule, and a 
silver sulphide molecule, [ 1); 

channel 2-states with the photoelectron moving inside the crystal, 12); 
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Figure 7. The processes leading U) the formation of a latent image in photography. See text 

channel 3-states with the photoelectron captured by a silver ion of the silver sulphide 
molecule, 13). 

The first step of the process is then modelled by a transition environment operator from 
state 11) to state 12). The coefficient depends on the light intensity. The localization in the 
second channel is represented by the projector onto state 12), with an appropriate coefficient, 
which is clearly very large, to represent all the interactions of the electron and ion with the 
crystal. The second step is described by the quantum state diffusion from state 12) to state 
13). In the Gumey and Mott theory as well as in our model this second step is irreversible, 
dissipative and stochastic; it takes place at the microscopic level. Again the localization is 
represented by a projection operator, this time onto state 13). Typically there is a sudden 
transition from channel 1 to channel 2 and another from channel 2 to 3. 

Note that if the incident photon were delocalized, it could excite two Ag'Br- molecules 
coherently, thus producing a coherent superposition of two photoelectrons. In our model 
the state diffusion reduces this superposition during the second step of the process, resulting 
in a single photoelectron that can record the classical event 'absorption of a photon'. 

The model could be made more realistic as described in the previous section. 
During the development of the photographic plate, crystals containing sufficient AgS 

molecules in state 13) are darkened. State 13) acts as a strong catalyser allowing crystals 
containing them to become distinguishable by the naked eye. There can be a period of weeks 
or months between the formation of the latent image and the process of development. The 
first stage is the quantum detection which takes place entirely at the microscopic level. The 
second stage is the amplification which is required to produce a macroscopic effect. For 
this example, as for DNA [13], the two processes are clearly separated. 

8. Radioactive decay 

This illustrates how the Schrodinger equation summarizes the statistics of the detailed 
behaviour of individual systems in the state diffusion model. Because position plays an 
important role it is convenient to use a notation in which the wavefunctions are represented 
explicitly. 
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A radioactive nucleus A with vector coordinate r decays into two decay products A I ,  A2 
with vector coordinates r l ,  r2. The two-vector x represents the state of decay, equal to xo 
for the radioactive atom and the orthogonal x12 for the decay products, where 

(8.1) 

If the radioactive atom is formed at time t = 0, then the solution of the Schrodinger equation 
for later times is represented to a good approximation by 

*(r ,  t )  = x&(T)e-"/' + xlZ@d(mirl +m2Tz)/(ml -I- m ~ ) ) @ & - ~  - VI,  t )  (8.2) 

where subscripts c and r refer to centre-of-mass and relative motion wavefunctions, and a! 
is the exponential decay rate. 

In the state diffusion model, this solution of the Schrodinger equation only represents 
the actual behaviour of the radioactive nucleus and its decay products in those extremely 
rare or non-existent conditions for which neither the nucleus nor either product interacts 
with its environment. As soon as interaction takes place there is diffusion which leads to 
localization. This can be represented in increasing detail by a succession of approximations. 

In the simplest and crudest approximation, the spatial dependence is ignored, and the 
radioactive decay is represented by an environment operator which is transition operator in 
the X-space: 

1/2 [ 0 01 
1 0  L, = LY (8.3) 

which produces the exponential decay of the radioactive atom. The interactions of 
the radioactive atom and the decay products with their environments are represented 
by projection environment operators onto the corresponding states, with coefficients that 
represent the strength of the interactions, which normally act much more quickly than the 
radioactive decay rates: 

This is identical to the two-state version of the quantum cascade illustrated in [I, figure 
61. The model state vector diffuses in the close neighbourhood of ~0 until it makes a 
relatively sudden transition to the decayed state. 

In a better approximation the decay of the nucleus is represented by its Hamiltonian If, 
which, if acting on its own, would give the solution (8.2). The decay is thus represented 
by the Hamiltonian, and does not require an additional environment term. The interaction 
of the radioactive nucleus with its environment is represented as before, but the position 
dependence of the interactions of the decay products is represented explicitly by projection 
environment operators Pk onto the regions of space where the interaction can take place, 
with coefficients yk whose magnitude is obtained from the effective interaction rates. 

9. Discussion 

We have applied state diffusion theory to a wide variety of physical processes using models 
and approximations similar to those of elementary classical elecmc circuit theory. We 
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have not yet carried out the detailed analyses of the physics of the interactions with the 
environment which lead to the localization, but that could be done by calculations of rates 
similar to those that are used for the density operator theory. Such a state diffusion analysis 
would be equivalent to deducing the behaviour of a classical resistor from the detailed 
behaviour of conduction electrons within it, which is much more difficult !J~an the circuit 
theory itself. 

A general pattern emerges from these studies. When a diffuse quantum wave of a simple 
or compound system like an electron, atom or molecule moves into an absorbing solid or 
liquid, the localization rate is determined by rate constants within &absorber, which are 
normally much faster than the typical mean transition rate of the particle into the absorber. 
Consequently the wansitions for the individual systems of the ensemble take place much 
more rapidly than the mean rate of absorption [l, figure 61, and resemble the instantaneous 
quantum jumps which are the basis of alternative stochastic state-vector simulations, see 
[1,2,16]. This applies not only to atomic or nuclear transitions, including radioactive decay, 
but also, for example, to the absorption of a particle by a screen. 

Although the general theory applies to localization with respect to arbitrary dynamical 
variables, the finite range in position space of effective interactions between particles gives 
a particular importance to position localization, which does not have to be assumed, as in 
the Ghirardi-Rimini-Weber theory [4,6]. The position localization of individual particles 
leads to configuration localization of compound systems like molecules interacting with 
their environment. The environment determines the Galilean frame of the localization. 
The stability of chiral molecules and the associated symmetry breaking are almost trivial 
consequences of the position localization of the atoms of the molecule. The principles are 
illustrated by the behaviour of a quartic double-well oscillator in vruious approximations 
and with various environment operatog. These are also used to demonstrate phase-space 
localization, which is observed everywhere for macroscopic systems. 

Of particular importance is the study of the formation of the latent image in photography, 
for this is not only the most common quantum detection technology, but it also shows 
unequivocally that amplification up to the macroscopic level is quite unnecessary for the 
formation of a permanent classical record of a quantum event, by contrast with the example 
of the pointer, which is so often used. 
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